Long-term Hydrology and Water Quality of a Drained Pine Plantation in North Carolina
نویسندگان
چکیده
Long-term data provide a basis for understanding natural variability, reducing uncertainty in model inputs and parameter estimation, and developing new hypotheses. This article evaluates 21 years (1988-2008) of hydrologic data and 17 years (1988-2005) of water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the beginning of the investigation (1988) and 34 years at the end (2008). The 21-year average rainfall of 1517 mm was 9% higher than the 50-year (1951-2000) long-term average of 1391 mm observed at the nearest U.S. Weather Bureau station in Morehead City, North Carolina. Annual rainfall varied from 852 mm in the driest year (2001) to 2331 mm in the wettest year (2003) during the study period and was affected by several hurricanes and tropical storms. The runoff coefficient (ROC; drainage outflow expressed as a fraction of rainfall) varied from 0.05 in the driest year to as high as 0.56 in the wettest year (2003), with an average ROC of 0.32. Annual outflow (runoff) on this watershed was primarily subsurface flow to drainage ditches and was strongly correlated with rainfall (R2 = 0.81). Outflows were greater, more continuous, and longer in winter than in other seasons. Outflow in winter was 59% of rainfall on average. March was the only month that never produced zero outflow. The lowest mean outflow occurred in the spring and was significantly different from the other three seasons. Consistent with theory for subsurface drainage, outflow from this poorly drained land is dependent on water table elevation and occurs when the water table is within about 1.1 m of the surface. The water table tended to be close to the surface during the winter and early spring with low ET demands, and during summer with hurricanes and tropical storms producing large outflows, but was drawn down to depths much deeper than the drains during long dry periods in summer and fall. As a result, annual outflow and annual average water table depth were only weakly correlated (R2 = 0.52). There was no relationship (R2 = 0.01) between the annual average water table depth and the annual average evapotranspiration (ET), calculated as the difference between annual rainfall and outflow. The estimated average annual ET of 1005 mm was close to the Penman-Monteith based average annual potential ET (PET) of 1010 mm for a grass reference. Although nitrogen (N) levels in the drainage water were elevated after fertilization of the stand in late 1988, these elevated levels declined substantially by 1995. Average annual concentrations of total N ranged from 0.51 to 2.23 mg L-1 with a long-term average of 1.10 mg L-1. Annual average values for total P ranged from 0.01 to 0.12 mg L-1 with an average of 0.04 mg L-1. The highest average annual concentrations for N and P occurred in 1989 (N) and 1990 (P) following fertilization in spring of 1989. The average annual total N and P loadings were 6.5 ±5.3 kg ha-1 and 0.17 ±0.11 kg ha-1, respectively. Both concentrations and annual loadings were similar to other forested sites in the region. These long-term data should be useful for assessing the effects of land use change and management treatments on the hydrology and water quality of similar lands in the coastal
منابع مشابه
Effects of Thinning on Hydrology and Water Quality of a Drained Pine Forest in Coastal North Carolina
A study was conducted to examine the effects of commercial thinning on hydrology and water quality of a 28-year old (in 2002) drained loblolly pine (Pinus taeda L.) plantation watershed (D3) using another adjacent watershed (D1) as a control. A paired watershed approach was used with data from two periods (1988-90 and 2000-02) for calibration and data from 2002-07 as the treatment period. Both ...
متن کاملHydrologic and Water Quality Effects
Forest operations such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The influence of these operations conducted on organic soil sites can be more pronounced than on mineral soil sites due to the differences in bulk density and soil moisture relationships that exist between mineral and organic soils. This article reports ...
متن کاملDRAINMOD-FOREST: Integrated Modeling of Hydrology, Soil Carbon and Nitrogen Dynamics, and Plant Growth for Drained Forests.
We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly f...
متن کاملImpacts of fertilization on water quality of a drained pine plantation: a worst case scenario.
Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North ...
متن کاملClimate Change Impacts on the Hydrology and Productivity of a Pine Plantation1
There are mcreasing concerns in the forestry community about global climate change and variability associated with elevated atmospheric CO2. Changes in precipitation and increases in air temperature could impose additional stress on forests during the next century. For a study site in Carteret County, North Carolina, the General Circulation Model, HADCM2, predicts that by the year 2099, maximum...
متن کامل